Question Number	Answer			Mark
1 (a)	1. plants can be \{re-grown / sustainable / eq\} OR starch \{renewable / sustainable\} OR oil is \{non- sustainable / non-renewable eq\}; 2. idea of biodegradability ; 3. idea of cheapness ;			(2)
Question Number	Answer			Mark
1 (b)	Statement Consists of microfibrils held together by hydrogen bonds Found in amyloplasts Made up of B-glucose monomers 1 mark for each correct row	Starch \times \checkmark x	Cellulose \times \times	(3)
Question Number	Answer			Mark
1 (c)(i)	1. chloroplast (s) ;			(1)

Question Number	Answer	Mark
$\mathbf{1}$ (c)(ii)	1. (it has) ribosomes ffloating / inside membrane / eq\}/ in rER \{ribosomes not floating / are attached (to membranes) / not inside\} / eq ;	
2. it has DNA / rER does not contain DNA / eq ; 3. idea of presence of internal membranes e.g. thylakoid membrane, grana ;		
4. (it has) a \{double membrane / envelope\}/ rER does not have a \{double membrane / envelope\}/ eq ;	5. no \{flattened sacs / cisternae\}/ eq ;	(2)

Question Number	Answer	Mark
$\mathbf{1}$ (d)	1. both are used for (structural) support / eq ; 2. only xylem (vessels) transport water / eq ; 3. only xylem (vessels) transport mineral ions / eq ; allow converse for $2^{\text {nd }}$ and 3 $3^{\text {rd }}$ marking points	
		(3)

Question Number	Answer	Mark
2(a)(i)	1. both h ose molecules in disaccharide correctly drawn ; 2. i ication that water is formed ; 3. gly sidic bond correctly drawn;	

Question Number	Answer	Mark
2(a)(ii)	condensation / polymerisation ;	(1)

Question Number	Answer	Mark
2(a)(iii)	$(1,4)$ glycosidic (bond / link) ;	(1)

Question Number	Answer	Mark
2(b)(i)	A;	(1)

Question Number	Answer	Mark
2(b)(ii)	B;	(1)

Question Number	Answer	Mark
2(b)(iii)	B ;	(1)

Question Number	Answer	Mark
2(c)(i)	1. genoty s of parents correctly shown; 2. alleles present in gametes cor ctly shown; 3. possible enotypes of offspring correctly shown ; 4. probab ity stated as $\{0.5 / 50 \% / 1$ in $2 / 1 / 2 /$ $50: 50\} ;$	

Question Number	Answer	Mark
2(c)(ii)	The same (as the probability is for the first child) $;$	(1)

Question Number	Answer	Mark
3 (a)(i)	circle labelled G between one glucose monomer and the next ;	(1)

Question Number	Answer	Mark
$\mathbf{3}$ (a)(ii)	circle labelled H placed on diagonal bonds (dotted lines) between adjacent cellulose molecules;	(1)

Question Number	Answer	Mark
$\mathbf{3}$ (b)(i)	1. B ;	2. $\{$ most/ highest $\}$ magnesium (ions) ;

Question Number	Answer	Mark
3 (b)(ii)	1. B;	
2.(most/ highest calcium (ions) ; / primary cell wall/ calcium pectate / pectin\}/ eq ;	(3)	

Question Number	Answer	Mark
$\mathbf{3}$ (c)(i)	2.65 to 2.70 ;	$\mathbf{(1)}$

Question Number	Answer	Mark
3 (c)(ii)	Any one from: 1. \{less/ reduced\} genetic variation/ reduced effect of genotype	2. seeds are the \{same age / produced under the same conditions\};

Question Number	Answer	Mark
3 (c)(iii)	Any two from	
1. volume of solution ; 2. light / eq ; 3. temperature ; 4. concentration of other mineral ions ; 5. pH ; 6. initial status of seedlings e.g. height ;	(2)	

Question Number	Answer	Mark
4 (a)	1. (organs) made up of tissues ; 2. (organs) made up of many different cell types / eq ;	
	3. (organs) can have more than 1 function / eq ;	max $\mathbf{(2)}$

Question Number	Answer	Mark
*4(b)(i) QWC	(QWC - Spelling of technical terms (shown in italics) must be correct and the answer must be organised in a logical sequence) 1. both made up of glucose / eq ; 2. both \{have(1-4) glycosidic bonds / made by condensation reactions\}/ eq ; 3. both have $1-4$ (glycosidic) bonds ; 4. starch is α glucose, cellulose is β glucose ; 5. starch composed of \{more than one type of molecule / amylose and amylopectin ; 6. correct reference to \{branching / 1-6 bonds / helix\} in starch / straight chain in cellulose; 7. all monomers same orientation in starch / every other one inverted in cellulose ;	max (4)

Question Number	Answer	Mark
4 (b)(ii)	1. idea of (tensile) strength / flexible / inelastic / eq ;	
2.\{parallel arrangement / eq\}/ reference to hydrogen bonding / several layers of fibres / reference to \{criss cross / net like\} arrangement (of microfibrils) ;	(2)	

Question Number	Answer	Mark
4 (c)(i)	Any one or more of the inner segments e.g.	

Question Number	Answer	Mark
4(c)(ii)	1. su ort / stability / eq ; 2. tran ort of water ; 3. tran ort of \{minerals / ions / eq\};	max $\mathbf{(2)}$

